Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 823, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280877

RESUMEN

Droughts or floods are usually attributed to precipitation deficits or surpluses, both of which may become more frequent and severe under continued global warming. Concurring large-scale droughts in the Southwest and flooding in the Southeast of China in recent decades have attracted considerable attention, but their causes and interrelations are not well understood. Here, we examine spatiotemporal changes in hydrometeorological variables and investigate the mechanism underlying contrasting soil dryness/wetness patterns over a 54-year period (1965-2018) across a representative mega-watershed in South China-the West River Basin. We demonstrate that increasing rainfall intensity leads to severe drying upstream with decreases in soil water storage, water yield, and baseflow, versus increases therein downstream. Our study highlights a simultaneous occurrence of increased drought and flooding risks due to contrasting interactions between rainfall intensification and topography across the river basin, implying increasingly vulnerable water and food security under continued climate change.

2.
Huan Jing Ke Xue ; 44(5): 2694-2703, 2023 May 08.
Artículo en Chino | MEDLINE | ID: mdl-37177942

RESUMEN

Grasslands, as one of the key ecosystems relevant to the terrestrial ecosystem carbon and water cycles as well as the ecological security in China, are very sensitive to climate change and human activities. However, the relative contributions of climate change and human activities on the vegetation restoration in those regions are still controversial. Using ecosystem net primary production (NPP) as an ecological indicator, this study quantified the relative roles of climate change and human activities on vegetation restoration in Chinese typical grasslands (northern temperate grasslands and Qinghai-Tibet Plateau alpine grasslands) by comparing the trends of actual NPP derived from MODIS and potential NPP estimated by the Thornthwaite Memorial model during 2000-2020. The results showed that approximately 93% of the grasslands in the study area experienced a recovering tendency, with an average increase of NPP (carbon) by 2.12 g·(m2·a)-1(P<0.01). Therein, nearly half of the vegetation-restored areas were jointly-dominated by climate change and human activities, whereas approximately 36% and 10% of the restored areas were controlled individually by climate change and human activities, respectively. In addition, the share of climate-change dominated areas differed greatly by grassland types, characterized by a much larger area percentage in the alpine grasslands than that in the temperate grasslands and an increasing area share with a drying background climate. This study suggested that human activities were not primarily responsible for the vegetation restoration in northern temperate grasslands and Qinghai-Tibet Plateau alpine grasslands, but they could decrease and even cancel the possible vegetation degeneration caused by worsening climate in a few regions. Long-term monitoring of vegetation dynamics and a multi-method comparison are needed in future studies.


Asunto(s)
Ecosistema , Pradera , Humanos , Cambio Climático , China , Actividades Humanas
3.
Sci Total Environ ; 854: 158638, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36089010

RESUMEN

The atmospheric urban heat island (AUHI) effect, traditionally measured by in-situ sensors mounted on fixed meteorological stations, has been extensively studied by different and imperfect methods. However, facts and uncertainties of the AUHI estimates revealed by the different methods are not well understood at a large scale. Here we examined the spatial-temporal variations of the AUHI effects from multiple perspectives in China's 86 large cities as revealed by national-level meteorological observations at 2-m height from 1981 to 2017. We find relatively consistent patterns of larger urban heating effects in daily minimum temperature, winter, and Northeast China than their counterparts in terms of multiyear mean intensity (AUHII), long-term trend (△AUHII), and contribution to local warming (according to the CTRUMR "urban minus rural" and CTROMR "observation minus reanalysis" methods). Concurrently, a cooling impact or a reduction in the heating effect has been observed in some cities randomly, especially in daily maximum temperature. On average across cities, the AUHII, △AUHI, CTRUMR, and CTROMR for the daily mean temperature amount to 0.33 °C, 0.013 °C 10a-1, 53 %, and 23 % at an annual mean time scale, respectively. Nevertheless, the poor representativeness of weather stations, discrepancies among the quantification methods, nonlinearity of the long-term tendencies, and coupling effects with rural crop land use activities lead to large uncertainties of the AUHI estimates. Our results emphasize the limitations of national-level meteorological stations in characterizing AUHI in China and suggest that the urban heat island remains a "well described but rather poorly understood" phenomenon warranting further investigation by a combined uses of multiple techniques like high-density sensor networks, remote sensing techniques, and high-resolution numerical models.

4.
Huan Jing Ke Xue ; 43(9): 4902-4910, 2022 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-36096630

RESUMEN

The Loess Plateau is one of the most eco-fragile regions in China, and therefore the scientific evaluation of its ecological vulnerability provides a premise for the effective implication of ecological protection and management practices. However, previous studies have mainly focused on the ecological vulnerability in a small region, which cannot reflect the overall picture of the ecological vulnerability in the Loess Plateau. Based on the "exposure-sensitivity-adaptation" framework, this study investigated the spatial-temporal patterns and their driving forces of the ecological vulnerability in the Loess Plateau from 2000 to 2015 through a combined use of the analytic hierarchy process, spatial principal component analysis, and Geodetector analysis. The results showed that the ecological vulnerability was overall at a moderate to high level, and the vulnerability was clearly higher in the northwestern part of the Loess Plateau than that in the southeastern counterparts. Additionally, the ecological vulnerability differed greatly by land use type. The ecological vulnerability decreased after an increase from 2000 to 2015 and in general decreased slightly throughout the study period. Therein, approximately 64% of the total land area experienced an upward or downward trend in the vulnerability. Vegetation coverage and precipitation were the two main factors contributing to the spatial-temporal variability in the ecological vulnerability, and there were significant interactions among all the used indicators. This study suggests that climate change and human activities may help reduce the ecological vulnerability over the Loess Plateau, although their contributions are limited.


Asunto(s)
Cambio Climático , Ecosistema , China , Actividades Humanas , Humanos , Análisis de Componente Principal
5.
Sci Total Environ ; 823: 153652, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35124056

RESUMEN

The surface urban heat island (SUHI) phenomenon is characterized by both high spatial and temporal variability, while its diurnal (i.e., diel) variations have rarely been investigated because traditional satellites and sensors flying on polar orbits (e.g., Landsat, MODIS) have no diurnal sampling capability. Here we combined land surface temperature (LST) data from the Geostationary Operational Environmental Satellites (GOES-R) and the Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) to explore the diurnal variations of SUHI and thermal differentiation among various land covers over the Boston Metropolitan Area. With the combined use of the LST data from GOES-R and ECOSTRESS, we took advantage of the strengths of both GOES-R (i.e., high frequency in each day and night) and ECOSTRESS (i.e., much finer spatial resolution). The SUHI intensity of the urban-core and suburban areas both exhibited clear diurnal patterns for different seasons: a continuous increase in the SUHI intensity from sunrise to noon and a decrease thereafter to sunset, followed by a relatively low and constant intensity during nighttime. The LST contrasts among different land cover types were clearly larger in the daytime than at nighttime and peaked around midday. At noon in summer, the LST of 'Developed, High Intensity' was 2.6 °C higher than that of 'Developed, Medium Intensity', and about 4.6 °C higher than that of "Developed, Open Space" and "Developed, Low Intensity". Controlling the percent impervious surface in construction land at a relatively low level (e.g., below ~49%) could effectively alleviate the impacts of SUHI. Compared with GOES-R data, ECOSTRESS LST is suitable for monitoring the diurnal variations of intracity thermal environment at the subdistrict (or neighborhood) scale. Our study highlights the value of the combined use of geostationary satellite and ECOSTRESS LST in exploring the diurnal cycling of the SUHI, and can help inform urban planning and land-based climate mitigation policies in the context of climate change.


Asunto(s)
Ecosistema , Calor , Ciudades , Monitoreo del Ambiente , Temperatura
6.
Sci Total Environ ; 804: 150119, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34517325

RESUMEN

Urbanization and agriculture, the two major and concurrent land use activities, can dramatically alter land surface temperature (LST) through multiple biophysical processes. However, previous studies mainly focused on the warming effects of urbanization in large cities and/or urban core areas that may greatly underestimate the land use impacts on regional climate. Using natural forest as a reference, we assessed the LST changes of both urbanization and agriculture in the three most developed urban agglomerations of China (Jing-Jin-Ji, JJJ; Yangtze River Delta, YRD; Pearl River Delta, PRD) according to satellite observations. Results show that the urban-dominated lands warm the daytime LST substantially, especially in the south subtropical PRD (with an annual mean intensity of 5.5 °C), and the highest do not occur in the core cities. The crop-dominated lands also warm the daytime LST dramatically, especially in the temperate semi-humid JJJ (with an annual mean intensity of 3.9 °C). The daytime warming effects increase significantly from 2003 to 2018 mainly due to urban expansion in crop-dominated and mixed lands. The two land uses continue to warm the LST at night though in a lower magnitude in the PRD. However, the urban-dominated lands warm the LST slightly and the crop-dominated lands cool the LST substantially at night in the JJJ and YRD. Overall, the crop-dominated and/or mixed lands dominate the regional LST changes owing to their large areas. We further show that the daytime warming effects of the two land uses are likely caused by the changes of evapotranspiration, whereas the nighttime cooling effects might be mainly due to the changes in surface albedo and roughness. Our results highlight the importance of considering the urbanization in small-medium sized satellite cities and the more widespread agricultural activities in rural areas when assessing the regional climate change and formulating the mitigation strategies.


Asunto(s)
Ríos , Urbanización , Agricultura , China , Ciudades , Temperatura
7.
Huan Jing Ke Xue ; 42(10): 5037-5045, 2021 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-34581148

RESUMEN

Accelerating urbanization seriously intensifies urban heat island effects in China, which in turn affects regional environment and human health. However, the spatiotemporal patterns of atmospheric urban heat island effects remain poorly understood in China as previous research is mostly based on satellite-sensed radiation temperatures. Using long-term daily meteorological observations from 1960 to 2017, this study explored the geographical distribution of atmospheric urban heat islands over diurnal, intra-annual, and inter-annual timescales in 84 major cities in China. The results show that on average, the intensity of the urban heat island reaches(0.9±1.1)℃, although large geographical variations were detected. The intensity was, overall, larger in northern China than in southern China; North China showed the largest annual intensity of(1.4±1.4)℃, and seasonal intensity variations were high in northeast and northwest China. Here, significantly higher intensity effects were measured at night[(1.2±1.1)℃] than during the day[(0.5±1.2)℃], and in summer than winter during the day, and in winter than summer during the night. Inter-annually, the annual mean urban heat island effect has increased by an average of 0.040℃ per decade, although this trend weakens after 2009. Furthermore, we found that the spatial patterns of atmospheric heat island intensity was greatly affected by climatic background conditions and the location of meteorological stations, while the long-term trends were strongly influenced by the impervious surface area. This study improves understanding of the atmospheric urban heat island effect in China and provides important insights for formulating urban land-use strategies to alleviate high temperatures and heatwaves.


Asunto(s)
Monitoreo del Ambiente , Calor , China , Ciudades , Humanos , Urbanización
8.
Sci Total Environ ; 763: 144224, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33383505

RESUMEN

The surface urban heat island (SUHI) is one of the most significant human-induced alterations to the Earth's surface climate and can aggravate health risks for city dwellers during heat waves. Although the SUHI effect has received growing attention, its diurnal cycles (i.e., the variations over the full 24 h within the diel cycle) are poorly understood because polar-orbiting satellites (e.g., Landsat Series, Sentinel, Terra, Aqua) only provide one or two observations over each repeat cycle (e.g., 16 days) with constant overpass time for the same area. Geostationary satellites provide high-frequency land surface temperature (LST) observations throughout the day and the night, and thereby offer unprecedented opportunities for exploring the diurnal cycles of SUHI. Here we examined how the SUHI intensity varied over the course of the diurnal cycle in the Boston Metropolitan Area using LST observations from the NOAA's latest generation of Geostationary Operational Environmental Satellites (GOES-R). GOES-R LST was strongly correlated with MODIS LST (R2 = 0.98, p < 0.0001) across urban core, suburban, and rural areas. We calculated the SUHI intensity at an hourly time step for both the urban core and suburban areas using GOES-R LST data. The maximum SUHI intensity for the urban core occurred near noon, and was +3.0 °C (12:00), +5.4 °C (12:00), +4.9 °C (11:00), and +3.7 °C (12:00) in winter, spring, summer, and autumn, respectively. The maximum intensity for the suburban area was about 3.0 °C lower in spring and summer and 2.0 °C lower in autumn and winter than that of the urban-core area. The minimum SUHI intensity occurred at nighttime, and ranged from -1.0 °C to +1.0 °C. The difference in the nighttime SUHI intensity between urban core and suburban area was insignificant for all seasons except the summer. The SUHI intensity showed similar diurnal variations across the seasons. Throughout the year, the maximum SUHI intensity (+2.7-+5.8 °C) at the urban core occurred at 11:00-14:00 (local time), while the minimum SUHI intensity (-0.6-+0.9 °C) was commonly observed at 00:00-07:00 and 17:00-23:00. We also found different relationships between SUHI intensity and potential drivers within a diurnal cycle, characterized by the strongest correlation with impervious surface area and population size during the middle of the day, and with tree canopy cover at night. Our research highlights the great potential of the new-generation geostationary satellites in revealing the detailed diurnal variations of SUHI. Our findings have implications for informing urban planning and public health risk management.

9.
Glob Chang Biol ; 26(7): 3920-3929, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32162439

RESUMEN

Large-scale terrestrial carbon (C) estimating studies using methods such as atmospheric inversion, biogeochemical modeling, and field inventories have produced different results. The goal of this study was to integrate fine-scale processes including land use and land cover change into a large-scale ecosystem framework. We analyzed the terrestrial C budget of the conterminous United States from 1971 to 2015 at 1-km resolution using an enhanced dynamic global vegetation model and comprehensive land cover change data. Effects of atmospheric CO2 fertilization, nitrogen deposition, climate, wildland fire, harvest, and land use/land cover change (LUCC) were considered. We estimate annual C losses from cropland harvest, forest clearcut and thinning, fire, and LUCC were 436.8, 117.9, 10.5, and 10.4 TgC/year, respectively. C stored in ecosystems increased from 119,494 to 127,157 TgC between 1971 and 2015, indicating a mean annual net C sink of 170.3 TgC/year. Although ecosystem net primary production increased by approximately 12.3 TgC/year, most of it was offset by increased C loss from harvest and natural disturbance and increased ecosystem respiration related to forest aging. As a result, the strength of the overall ecosystem C sink did not increase over time. Our modeled results indicate the conterminous US C sink was about 30% smaller than previous modeling studies, but converged more closely with inventory data.


Asunto(s)
Carbono , Ecosistema , Carbono/análisis , Secuestro de Carbono , Clima , Cambio Climático , Bosques , Estados Unidos
10.
Sci Total Environ ; 639: 1408-1420, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29929304

RESUMEN

Grazing is a major ecosystem disturbance in arid regions that are increasingly threatened by climate change. Understanding the long-term impacts of grazing on rangeland vegetation dynamics in a complex terrain in mountainous regions is important for quantifying dry land ecosystem services for integrated watershed management and climate change adaptation. However, data on the detailed long-term spatial distribution of grazing activities are rare, which prevents trend detection and environmental impact assessments of grazing. This study quantified the impacts of grazing on vegetation dynamics for the period of 1983-2010 in the Upper Heihe River basin, a complex multiple-use watershed in northwestern China. We also examined the relative contributions of grazing and climate to vegetation change using a dynamic grazing pressure method. Spatial grazing patterns and temporal dynamics were mapped at a 1 km × 1 km pixel scale using satellite-derived leaf area index (LAI) data. We found that overgrazing was a dominant driver for LAI reduction in alpine grasslands and shrubs, especially for the periods of 1985-1991 and 1997-2004. Although the recent decade-long active grazing management contributed to the improvement of LAI and partially offset the negative effects of increased livestock, overgrazing has posed significant challenges to shrub-grassland ecosystem recovery in the eastern part of the study basin. We conclude that the positive effects of a warming and wetting climate on vegetation could be underestimated if the negative long-term grazing effects are not considered. Findings from the present case study show that assessing long-term climate change impacts on watersheds must include the influences of human activities. Our study provides important guidance for ecological restoration efforts in locating vulnerable areas and designing effective management practices in the study watershed. Such information is essential for natural resource management that aims at meeting multiple demands of watershed ecosystem services in arid and semiarid rangelands.

11.
Sci Total Environ ; 628-629: 415-429, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29448025

RESUMEN

Increasingly urban agglomeration, representing a group of cities with a compact spatial organization and close economic links, can rise surface temperature in a continuous area due to decreasing distance between cities. Significant progress has been made in elucidating surface urban heat island intensity (SUHII) of a single city or a few big cities, but the SUHII's patterns remain poorly understood in urban agglomeration regions. Using Aqua/Terra MODIS data over 2010-2015, we examined the SUHII variations and their drivers in Yangtze River Delta Urban Agglomeration (YRDUA) of east China. Instead of using the widely-used suburban/rural areas as references, this study predicted the unaffected reference temperature wall-to-wall from natural forests by a simple planar surface model. Results indicated that urbanization warmed the land surface regardless of urban area size in YRDUA, with the SUHII clearly larger in the day (2.6±0.9°C) than night (0.7±0.4°C). The SUHII varied markedly by cities, yet the largest did not happen in the presumed core cities. Also, the SUHII differed greatly in a seasonal cycle, with summer-winter difference of 4.2±0.9°C and 2.0±0.5°C in the day and night, respectively. Particularly, cooling effects of urban areas were observed in winter for the majority of cities at night. These spatiotemporal patterns depend strongly on the background climate (precipitation and air temperature), vegetation activity, surface albedo, and population density, with contrast mechanisms during the day and night. Further, we showed that ignoring urban agglomeration effect (using suburban/rural areas as the unaffected references) would lead to large biases of SUHII estimates in terms of magnitude and spatial distribution. Our results emphasize the necessity of considering cities altogether when assessing the urbanization effects on climate in an urban agglomeration area.

12.
Sci Total Environ ; 589: 73-88, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28264774

RESUMEN

Leaf area index (LAI) is a key parameter to characterize vegetation dynamics and ecosystem structure that determines the ecosystem functions and services such as clean water supply and carbon sequestration in a watershed. However, linking LAI dynamics and environmental controls (i.e., coupling biosphere, atmosphere, and anthroposphere) remains challenging and such type of studies have rarely been done at a watershed scale due to data availability. The present study examined the spatial and temporal variations of LAI for five ecosystem types within a watershed with a complex topography in the Upper Heihe River Basin, a major inland river in the arid and semi-arid western China. We integrated remote sensing-based GLASS (Global Land Surface Satellite) LAI products, interpolated climate data, watershed characteristics, and land management records for the period of 2001-2012. We determined the relationships among LAI, topography, air temperature and precipitation, and grazing history by five ecosystem types using several advanced statistical methods. We show that long-term mean LAI distribution had an obvious vertical pattern as controlled by precipitation and temperature in a hilly watershed. Overall, watershed-wide mean LAI had an increasing trend overtime for all ecosystem types during 2001-2012, presumably as a result of global warming and a wetting climate. However, the fluctuations of observed LAI at a pixel scale (1km) varied greatly across the watershed. We classified the vegetation changes within the watershed as 'Improved', 'Stabilized', and 'Degraded' according their respective LAI changes. We found that climate was not the only driver for temporal vegetation changes for all land cover types. Grazing partially contributed to the decline of LAI in some areas and masked the positive climate warming effects in other areas. Extreme weathers such as cold spells and droughts could substantially affect inter-annual variability of LAI dynamics. We concluded that temporal and spatial LAI dynamics were rather complex and were affected by both climate variations and human disturbances in the study basin. Future monitoring studies should focus on the functional interactions among vegetation dynamics, climate variations, land management, and human disturbances.

13.
Carbon Balance Manag ; 11(1): 10, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27375771

RESUMEN

BACKGROUND: Human activities have diverse and profound impacts on ecosystem carbon cycles. The Piedmont ecoregion in the eastern United States has undergone significant land use and land cover change in the past few decades. The purpose of this study was to use newly available land use and land cover change data to quantify carbon changes within the ecoregion. Land use and land cover change data (60-m spatial resolution) derived from sequential remotely sensed Landsat imagery were used to generate 960-m resolution land cover change maps for the Piedmont ecoregion. These maps were used in the Integrated Biosphere Simulator (IBIS) to simulate ecosystem carbon stock and flux changes from 1971 to 2010. RESULTS: Results show that land use change, especially urbanization and forest harvest had significant impacts on carbon sources and sinks. From 1971 to 2010, forest ecosystems sequestered 0.25 Mg C ha-1 yr-1, while agricultural ecosystems sequestered 0.03 Mg C ha-1 yr-1. The total ecosystem C stock increased from 2271 Tg C in 1971 to 2402 Tg C in 2010, with an annual average increase of 3.3 Tg C yr-1. CONCLUSIONS: Terrestrial lands in the Piedmont ecoregion were estimated to be weak net carbon sink during the study period. The major factors contributing to the carbon sink were forest growth and afforestation; the major factors contributing to terrestrial emissions were human induced land cover change, especially urbanization and forest harvest. An additional amount of carbon continues to be stored in harvested wood products. If this pool were included the carbon sink would be stronger.

14.
Proc Natl Acad Sci U S A ; 113(22): 6313-8, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27185955

RESUMEN

Urbanization, a dominant global demographic trend, leads to various changes in environments (e.g., atmospheric CO2 increase, urban heat island). Cities experience global change decades ahead of other systems so that they are natural laboratories for studying responses of other nonurban biological ecosystems to future global change. However, the impacts of urbanization on vegetation growth are not well understood. Here, we developed a general conceptual framework for quantifying the impacts of urbanization on vegetation growth and applied it in 32 Chinese cities. Results indicated that vegetation growth, as surrogated by satellite-observed vegetation index, decreased along urban intensity across all cities. At the same time, vegetation growth was enhanced at 85% of the places along the intensity gradient, and the relative enhancement increased with urban intensity. This growth enhancement offset about 40% of direct loss of vegetation productivity caused by replacing productive vegetated surfaces with nonproductive impervious surfaces. In light of current and previous field studies, we conclude that vegetation growth enhancement is prevalent in urban settings. Urban environments do provide ideal natural laboratories to observe biological responses to environmental changes that are difficult to mimic in manipulative experiments. However, one should be careful in extrapolating the finding to nonurban environments because urban vegetation is usually intensively managed, and attribution of the responses to diverse driving forces will be challenging but must be pursued.


Asunto(s)
Ciudades , Ambiente , Desarrollo de la Planta , Urbanización , China , Conservación de los Recursos Naturales , Ecosistema , Calor , Humanos , Modelos Teóricos
15.
Sci Total Environ ; 544: 617-26, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26674691

RESUMEN

Urban heat island (UHI) represents a major anthropogenic modification to the Earth system and its relationship with urban development is poorly understood at a regional scale. Using Aqua MODIS data and Landsat TM/ETM+ images, we examined the spatiotemporal trends of the UHI effect (ΔT, relative to the rural reference) along the urban development intensity (UDI) gradient in 32 major Chinese cities from 2003 to 2012. We found that the daytime and nighttime ΔT increased significantly (p<0.05, mostly in linear form) along a rising UDI for 27 and 30 out of 32 cities, respectively. More rapid increases were observed in the southeastern and northwestern parts of China in the day and night, respectively. Moreover, the ΔT trends differed greatly by season and during daytime in particular. The ΔT increased more rapidly in summer than in winter during the day and the reverse occurred at night for most cities. Inter-annually, the ΔT increased significantly in about one-third of the cities during both the day and night times from 2003 to 2012, especially in suburban areas (0.25

16.
Environ Pollut ; 208(Pt A): 118-124, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26243476

RESUMEN

Urban heat island (UHI) can generate profound impacts on socioeconomics, human life, and the environment. Most previous studies have estimated UHI intensity using outdated urban extent maps to define urban and its surrounding areas, and the impacts of urban boundary expansion have never been quantified. Here, we assess the possible biases in UHI intensity estimates induced by outdated urban boundary maps using MODIS Land surface temperature (LST) data from 2009 to 2011 for China's 32 major cities, in combination with the urban boundaries generated from urban extent maps of the years 2000, 2005 and 2010. Our results suggest that it is critical to use concurrent urban extent and LST maps to estimate UHI at the city and national levels. Specific definition of UHI matters for the direction and magnitude of potential biases in estimating UHI intensity using outdated urban extent maps.


Asunto(s)
Ciudades , Calor , China , Ambiente , Monitoreo del Ambiente/métodos , Geografía
17.
Environ Sci Technol ; 49(16): 9600-9, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26212783

RESUMEN

The scale of urbanization in China during the past three decades is unprecedented in human history, and the processes are poorly understood. Here we present an effort to map the urban land expansion processes of 32 major cities in China from 1978 to 2010 using Landsat satellite data to understand the temporal and spatial characteristics. Results showed that the urban extent of the 32 cities expanded exponentially with very high annual rates varying from 3.2% to 12.8%. Temporal fluctuation in urban expansion rates in these 32 cities was obvious, with unexpected and alarming expansion rates from 2005 to 2010 that drastically exceeded their expectation, which was calculated from the long-term trend between 1978 and 2005, by 45%. Overall, we found that the growth rates of cities during the entire study period were inversely related to city size, contradicting the theory or Gibrat's law, which states that the growth rate is independent of city size. More detailed analysis indicated that city growth in China has transitioned from contradicting to conforming to Gibrat's law since 1995. Our study suggests that the urban expansion theory (i.e., Gibrat's law) does not fit Chinese expansion consistently over time, and the exact causes are unknown. Exploring the causes in future research will improve our understanding of the theory and, more importantly, understand the feasibility of the theoretical relationship between city size and expansion rate in guiding contemporary urban expansion planning.


Asunto(s)
Urbanización , China , Ciudades , Planificación de Ciudades , Humanos , Análisis Espacio-Temporal , Urbanización/tendencias
18.
Sci Rep ; 5: 11160, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26060039

RESUMEN

Urban heat island (UHI) is one major anthropogenic modification to the Earth system that transcends its physical boundary. Using MODIS data from 2003 to 2012, we showed that the UHI effect decayed exponentially toward rural areas for majority of the 32 Chinese cities. We found an obvious urban/rural temperature "cliff", and estimated that the footprint of UHI effect (FP, including urban area) was 2.3 and 3.9 times of urban size for the day and night, respectively, with large spatiotemporal heterogeneities. We further revealed that ignoring the FP may underestimate the UHI intensity in most cases and even alter the direction of UHI estimates for few cities. Our results provide new insights to the characteristics of UHI effect and emphasize the necessity of considering city- and time-specific FP when assessing the urbanization effects on local climate.

19.
Sci Total Environ ; 488-489: 136-45, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24829041

RESUMEN

Terrestrial vegetation plays many pivotal roles in urban systems. However, the impacts of urbanization on vegetation are poorly understood. Here we examined the spatiotemporal trends of the vegetation activity measured by MODIS Enhanced Vegetation Index (EVI) along Urban Development Intensity (UDI) gradient in 32 major Chinese cities from 2000 to 2012. We also proposed to use a new set of concepts (i.e., actual, theoretical, and positive urbanization effects) to better understand and quantify the impacts of urbanization on vegetation activities. Results showed that the EVI decreased significantly along a rising UDI for 28 of 32 cities (p<0.05) in linear, convex or concave form, signifying the urbanization impacts on vegetation varied across cities and UDI zones within a city. Further, the actual urbanization effects were much weaker than the theoretical estimates because of the offsetting positive effects generated by multiple urban environmental and anthropogenic factors. Examining the relative changes of EVI in various UDI zones against that in the rural area (ΔEVI), which effectively removed the effects of climate variability, demonstrated that ΔEVI decreased markedly from 2000 to 2012 for about three-quarters of the cities in the exurban (0.05

Asunto(s)
Ciudades/estadística & datos numéricos , Monitoreo del Ambiente , Urbanización/tendencias , China , Industria de la Construcción/estadística & datos numéricos , Desarrollo de la Planta , Árboles , Población Urbana , Remodelación Urbana/estadística & datos numéricos
20.
Sci Rep ; 3: 3547, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24352590

RESUMEN

Forest cutting is a major anthropogenic disturbance that affects forest carbon (C) storage and fluxes. Yet its characteristics and impacts on C cycling are poorly understood over large areas. Using recent annualized forest inventory data, we estimated cutting-related loss of live biomass in the eastern United States was 168 Tg C yr(-1) from 2002 to 2010 (with C loss per unit forest area of 1.07 Mg ha(-1) yr(-1)), which is equivalent to 70% of the total U.S. forest C sink or 11% of the national annual CO2 emissions from fossil-fuel combustion over the same period. We further revealed that specific cutting-related C loss varied with cutting intensities, forest types, stand ages, and geographic locations. Our results provide new insights to the characteristics of forest harvesting activities in the eastern United States and highlight the significance of partial cutting to regional and national carbon budgets.


Asunto(s)
Ciclo del Carbono , Ecosistema , Ambiente , Agricultura Forestal , Biomasa , Carbono/análisis , Dióxido de Carbono/análisis , Conservación de los Recursos Naturales , Ecología , Monitoreo del Ambiente , Árboles , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...